NDBC’s SCOOP Update

“Oceans in Action”
James Elliott and Rodney Riley
August 2014
Self-Contained Ocean Observations Payload (SCOOP)
Smart Module Board

Central building block of the electronics

Key Features

- GPS (time & position)
- Compass
- Iridium SBD modem
- 32GB storage
- IEEE 802.15.4 Radio (wireless network)
- Very low power (MSP430 processor)

Smart Modules interface sensor data to a central Hub (another Smart Module) to provide distributed processing and control of electronics

U.S. Patent Pending
Star type network

Hub:
- Coordinates wireless network of modules
- Interfaces to shore via Iridium SBD

BuoyCAM:
- Reports pictures by Iridium RUDICS
- Iridium SBD modem for backup of wireless network

Modules acquire, process, and send data to Hub(s)
MET-BuoyCAM-AIS

OBSERVATIONS:
- Winds, Pressure, Temperature, Humidity, AIS ship data, *BuoyCAM* - 360°
- RMY HD anemometer for high speed winds

ELECTRONICS:
- Iridium SIM-less (Observations)
- Iridium RUDICS (Pictures)
- 5, SMs provide distributed processing
- Linux computer for camera processing

CONSTRUCTION:
- All three antennas protected inside tube
- Acrylic Tube with skin cutouts for cameras
- Delrin end caps with O-ring seals
- Stainless Steel internal rack
- Design allows for MET only packaging
- 54” long, 28.5 lbs or 24” long, 16 lbs without masts
Wave & Ocean

WAVES
- NDBC Directional Waves
- MEMS 9 axis motion sensor

OCEAN
- Sea Surface temperature
- 9 discrete depth observations
- BASIC: Thermistor array
- OPTION: Sea-Bird system

CONSTRUCTION:
- Same as BuoyCAM-AIS-MET
- 10.5” long; 9 lbs
Power System

- Lithium Ion Rechargeable
- 10.9” x 9” x 4” battery pack
- 1339Wh capacity
- 10.8 Volts Nominal
- 4, 30 W solar panels
- Smart Controller for charging and system health

CONSTRUCTION:
- Aluminum frame
- 27” long x 20” Sq at 75 lbs
- Panels Collapse for shipping
System Changes with SCOOP

• Distributed architecture using NDBC’s Smart Module technology
• XML data message format
 – Easier to read, well accepted industry standard
• Smaller compact sealed modular design
 – Easier to ship and handle
 – Allows at-sea service to exchange entire payload, not pieces/parts
 – No exposed antennas
 – Increased reliability
• All Iridium, no GOES – allows for transmit retries and backchannel access
Data Changes with SCOOP

• **Hub**
 – Coordinates processed data transfer from end devices
 – Handles Iridium Short Burst Data (SBD) transmissions of processed data
 – Provides time and position synchronization to end devices
 – Provides system configuration metadata
 – Handles backchannel access to end devices through Iridium

• **MET / Extended MET**
 – Data collected, processed and reported every ten (10) minutes to shore instead of hourly
 • Decreased data latency
 • Allows for minimal impact from dropped transmissions
 – COTS All-In-One MET sensor
 • Allows field evaluation of All-In-One sensors versus individual legacy sensors
 – Heavy Duty/High Speed RM Young Anemometer
 • Higher reliability and increased range
Data Changes with SCOOP

• **Waves**
 – Wireless network data transfer of current wave processor and sensor (initial deployments)
 – Linux processor with (lower cost/power) MEMS sensor (ongoing development)

• **Ocean**
 – MET sea surface temperature using serial Seabird sensor in bridle – Sampled and reported every 10 minutes
 – Digital Thermistor Array (Option #1) – Nine (9) nodes from 5m to 150 m depths – Sampled every ten minutes – Reported hourly – (Base Option)
 – Seabird Sensor Array (Option #2) – New to Weather Buoy fleet – Up to nine (9) sensors of configurable type (T, CT, TD, CTD) – Sampled every ten (10) minutes – Reported hourly
Data Changes with SCOOP

- **BuoyCAM**
 - 360° view (currently 300°) – Pictures every 5 minutes – One transmitted per hour
 - Serves as secondary transmitter

- **Automatic Identification System (AIS)**
 - Store and report first unique vessel/message type pairs over two (2) minutes every thirty (30) minutes

- **Auxiliary**
 - General module with RS-232 and analog interfaces
 - Used to interface 3rd party sensors and equipment
 - Return data through wireless network with minimal impact to NDBC systems

- **Power System**
 - Lithium-Ion Smart Battery/Charging System
 - Retrieve (via Smart Battery Bus (SMBus)) battery status (i.e. voltage, current, temperature) every ten (10) seconds and report statistics once per hour and an expanded statistics daily
 - Allows for better system health monitoring and remote power management
Project Timeline

<table>
<thead>
<tr>
<th>Task</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>JUN</th>
<th>JUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Prototype</td>
<td></td>
</tr>
<tr>
<td>Field Test</td>
<td></td>
</tr>
<tr>
<td>Redesign</td>
<td></td>
</tr>
<tr>
<td>Build 20</td>
<td></td>
</tr>
<tr>
<td>Deploy</td>
<td></td>
</tr>
<tr>
<td>New Buoy Design</td>
<td></td>
</tr>
</tbody>
</table>
Beyond

• **Install on all hurricane array buoys**

• **Install on selected weather buoy & C-MAN stations around coastal U.S.**

• **Continue collaboration with other organizations (WHOI, MBARI, Scripps)**